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Abstract 

A satellite-derived hysteresis model is presented for estimate heat storage 

in urban areas. Storage heat flux, one of the dominant terms in the urban 

surface energy budget (USEB), is largely unknown despite its critical rela-

tionship to various urban environmental processes. This study introduces a 

novel technique for quantifying heat storage by relating multispectral satellite 

radiances and geophysical properties to ground-truth residual heat storage 

computed with flux instruments. Gradient-boosted regression trees serve as 

the method of maximizing the relationship between satellite data and flux 

measurements. Several flux networks are used to train and validate the model 

over varying land cover types, which strengthens the robustness of the model. 

The model performs well under variable weather conditions such as cloudy 

rainy days. In comparison with other studies, the RMSE and MAE values 

were found to be lower than some ground-to-ground studies, and is one of 

few satellite-derived methods that computes direct comparison over a range 

of different land cover types. 
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1. Introduction and Background 

Heat storage has been cited as a major contributor to the urban heat 

island phenomenon due to increased thermal conductivity and heat capac-

ity of impervious surfaces in cities (Grimmond et al., 1991; Oke, 1988; Ra-

mamurthy and Bou-Zeid, 2017; Roth and Oke, 1994; Taha, 1999). Several 

studies conclude that heat storage (ΔQs) is one of the dominant terms in 

the urban surface energy budget, in some cases amounting to 40% or more 

of the net radiation (Bonacquisti et al., 2006; Coutts et al., 2007; Grimmond 

and Oke, 2002; Offerle et al., 2006; Oke et al., 1999). Heat storage is also 

significant as a proxy for other fluxes. For example, anthropogenic heat may 

be difficult to measure, but it can be derived using energy balance closure if 

each of the other terms has been measured or calculated (Nitis et al., 2017; 

Offerle et al., 2005; Olivo et al., 2017; Wilson et al., 2002). Despite its signif-

icance, there is no standard for calculating ΔQs; instead, five common meth-

ods can be found scattered throughout the literature: the energy balance 

residual method (RES), the objective hysteresis model (OHM), the thermal 

mass scheme (TMS), the town energy balance (TEB), and the element sur-

face temperature method (ESTM) (Chrysoulakis et al., 2018; Grimmond and 

Oke, 1999; Kerschgens and Kraus, 1990; Lindberg et al., 2020; Lipson et al., 

2017; Masson, 2000; Oke and Cleugh, 1987). There are varying degrees of 

agreement between the different methods, as outlined in the Roberts et al. 

(2006) article, which reinforces the claims that there is no standard routine 

for measuring or calculating heat storage. 
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24 Much of the progress associated with urban heat storage has been lim-

ited to sparsely distributed eddy covariance instruments mounted on flux 

towers (Nordbo et al., 2012). Flux towers are great tools for measuring 

accurate fluxes within a given footprint, but they also give rise to incom-

plete spatial representations over heterogeneous areas due to the separation 

between sites (Feigenwinter et al., 2018; Kanda et al., 2006; Ramamurthy 

and Pardyjak, 2011). Some satellite methods remedy this by combining 

satellite-derived surface temperatures with NDVI-based relationships (Kato 

and Yamaguchi, 2005a; Parlow, 2003) that are capable of representing the 

urban form, however, nearly all are time-restricted by satellite overpass pe-

riods (Kato and Yamaguchi, 2007; Rigo and Parlow, 2007; Tsuang, 2005). 

This results in poor statistical significance and sparse diurnal distribution of 

data points, giving an incomplete picture of spatially-distributed urban heat 

storage. Fortunately, with the release of two new state-of-the-art geosta-

tionary satellites (GOES-16 and GOES-17) from the National Oceanic and 

Atmospheric Administration (NOAA), the time between satellite observa-

tions has finally become competitive with ground-based instruments (Schmit 

and Gunshor, 2020). 

In the present study, two methods are used to calculate heat storage: the 

residual method (RES) and a satellite-derived hysteresis model. The residual 

method acts as a ground-truth training and validation tool for the hysteresis 

model, something that is ordinarily done for the objective hysteresis model 

(OHM) proposed in the literature (Arnfield and Grimmond, 1998; Meyn and 

Oke, 2009; Pearlmutter et al., 2005). The GOES-16 satellite radiance data 

serves as the primary input variable to the model, while land cover and 
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49 geography-specific properties act as peripheral inputs to characterize each 

satellite pixel. The inclusion of satellite radiance avoids many of the short-

comings associated with applying the traditional objective hysteresis model 

(OHM) to satellite data, such as the non-Lambertianity of urban materi-

als and the difficulty in quantifying the temporal hysteresis of net radiation 

(Herold et al., 2004; Roberts et al., 2012). 

Gradient-boosted regression trees (GBRTs) are are used to statistically 

train and validate the satellite and geographic inputs against ground resid-

ual heat storage. Similar machine learning algorithms have been broadly 

demonstrated as approaches to correlating multivariate systems in Earth-

atmosphere interactions (Camps-Valls, 2009; DeFries and Chan, 2000; Lary 

et al., 2016; Novack et al., 2011; Yoo et al., 2018). Similar methods have been 

implemented for ground-to-satellite relationships involving aerosols (Just et al., 

2018), shortwave radiation (Yang et al., 2018b), water vapor (Just et al., 2019; 

Lee et al., 2019), soil moisture (Wei et al., 2019), among others. 

One of the major challenges facing the development of satellite energy 

balance estimates in urban areas is the lack of validation points. As a way 

to combat this, the NYS Mesonet (Mesonet, 2020), National Ecological Ob-

servatory Network (NEON) (Network, 2020b), and Ameriflux (Ameriflux, 

2020) networks all serve as ground-based instruments used for training and 

validating the satellite hysteresis algorithm. The GBRT model uses the wide 

range of geophysical properties from ground stations to develop an accurate 

and versatile characterization of heat storage in cities. The proposed method 

overcomes many of the issues plaguing satellite algorithms such as dropped 

pixels during cloudy periods, inaccurate material properties of urban sur-
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74 faces, and statistically insignificant analyses. And it does so by approaching 

the problem from a multi-network, statistical viewpoint. The benefits of this 

method will be discussed in great detail during the presentation of results. 

First, this paper outlines the methods used in quantifying heat storage in 

urban areas using satellite data. This includes description of heat storage and 

how it is traditionally measured and modeled with the hysteresis approach, 

presentation of the GBRT algorithm, and methods for downscaling the re-

sulting product. Then, New York City is introduced as the test area for the 

summer of 2019 , where summertime was chosen as a particular point of in-

terest because of the potential for heat storage to provide information about 

extreme heat events and urban heat island phenomena (Golden, 2004; Sailor, 

2014; Zhou and Shepherd, 2010). By the end of this study, a diurnal urban 

heat storage product will be posited, implemented, and validated. As a con-

sequence of using all 16 bands of the GOES-16 satellite (wavelengths from 

0.47µm - 13.3µm), all-weather periods are also captured, including clouds 

and precipitation - which are often caveats when developing satellite-based 

algorithms (Chrysoulakis et al., 2018; Middel et al., 2012). 

Several methods proposed here are new and novel, particularly in relation 

to the temporal resolution of the satellite radiance data. The multispectral 

satellite hysteresis model challenges the status quo in surface energy budget 

estimates by narrowing the temporal capabilities of a widely recognized de-

ficiency in the research area, thus, resulting in an application of heat storage 

that has potential implications in weather modeling, predictions of energy 

use, and the partitioning of energy across heat fluxes in urban environments. 
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98 2. Methodology 

2.1. Satellite Hysteresis Model 

The temporal hysteresis between net radiation and heat storage has been 

widely cited (Anandakumar, 1999; Grimmond et al., 1991; Järvi et al., 2014; 

Roth and Oke, 1994; Sun et al., 2013; Wang, 2014). Unfortunately, nearly all 

studies that employ the objective hysteresis model (OHM) use ground-based 

correlations to approximate heat storage. This leads to issues in spatial reso-

lution, as many towers are located far from one another. For the few studies 

that employ the OHM with satellite data, they first derive net radiation and 

then implement land cover-based coefficients from the literature (Rigo and 

Parlow, 2007). The direct implementation of the OHM to satellite data is 

highly inaccurate due to uncertainty associated with quantifying net radia-

tion. Satellite-derived net radiation can carry errors greater than the largest 

errors given in heat storage studies, making the direct implementation of the 

traditional OHM to satellite data unfavorable. The proposed multispectral 

method instead uses satellite radiances to avoid amounting errors associated 

with first deriving net radiation and OHM coefficients. 

The traditional objective hysteresis model (OHM) was first developed by 

Camuffo and Bernardi (1982) and is often attributed to Grimmond et al. 

(1991), which is stated below for a given surface type: 

dQ∗ 
 ΔQs = a1Q

∗ + a2 + a (1)
dt 3 

where a1, a2, a3 represent coefficients relating to different land cover types 

(i.e. urban, forest, crop), Q∗ is net radiation, and the derivative is typically 

computed on an hourly basis. 
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121 The satellite-derived hysteresis model is proposed below, where spectral 

radiances are used as the dominant input variables in place of net radiation. 

Land cover and geophysical properties are also used directly in the model, 

which leads to the following multi-variate satellite hysteresis relationship: 

ΔQs = f(th, Li, dLi/dt, gj , e, φ, λ) (2) 

where Li designates a spectral radiance band of the GOES-16 satellite, re-

placing Q∗ as the hysteresis variable. The index i represents each satellite 

band, spanning 1-16. The variable th is the local time in hours, from 0-23. 

The land cover input, labeled gj , is determined using the most recent itera-

tion of the National Land Cover Database (NLCD 2016)- a static database 

consisting of 20 land cover types, only 16 of which are present outside of 

Alaska and used in this study. The NLCD parameter gj ranges from 0 − 1 

and represents the fraction of each land cover class within a corresponding 

satellite pixel. The sum of all NLCD components over subscript j must sum 

to 1. The elevation, latitude, and longitude are also included in the model 

and are labeled e, φ, and λ, respectively. The variables that are input to 

the model are: 16 radiance bands, 16 radiance time derivatives, 20 NLCD 

classes, latitude, longitude, elevation, and hour of day. This amounts to 56 

variables used for training residual heat storage flux from ground stations. 

A process flow diagram for the satellite hysteresis model is given in Fig. 

1. The diagram represents each required data source and how it is used in 

the hysteresis model. The input data and process flow mimic the general se-

quence used in machine learning algorithms - where known parameters and 

variables are used as inputs, and desired variables are used for training and 
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Figure 1: Schematic diagram of the data sources, the derived variables, and how the 

process of developing and validating the model is carried out 

144 validation. The inputs used specifically in the hysteresis model are both sta-

tionary (land cover, latitude, longitude, elevation) and non-stationary (satel-

lite radiance). This combination of stationary and non-stationary informa-

tion will aid in the extrapolation to areas where ground stations do not exist. 

2.2. Residual Heat Storage 

The surface energy budget can be used to solve for heat storage as a 

residual between the heat sources and sinks under energy balance closure 

assumptions (Oke, 1988; Piringer et al., 2002; Sun et al., 2013, 2017b): 
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 ΔQs = Q∗ − (QH + QLE ) (3) 

where ΔQs denotes the storage heat flux, Q∗ is the all-wave net radiation, 

and QH and QLE represent the sensible and latent heat fluxes, respectively. 

The residual heat storage derived above is a straightforward method and is 

often used when radiometers and eddy covariance instruments are available 

to measure the remaining fluxes (Ferreira et al., 2013; Roberts et al., 2020). 

The anthropogenic heat flux (QF ) is often omitted under the assumption 

that either the error associated with models for QF are larger than its con-

tribution to the energy budget (Parlow et al., 2014; Sun et al., 2017a), or 

the eddy covariance instruments are believed to capture most of the radia-

tive, conductive, and convective components of the anthropogenic release. 

(Grimmond and Oke, 2002). 

The sensible and latent heat fluxes are observed using closed-path eddy 

covariance systems fitted with gas analyzers and 3-D ultrasonic anemome-

ters (Balogun et al., 2009). Net radiation is measured using net radiometers, 

taking components of incoming and outgoing shortwave and longwave radi-

ation in balance (Ando and Ueyama, 2017). Two networks were used, the 

NYS Mesonet and National Ecological Observatory Network (NEON); thus, 

varying models of instrumentation can be found across all sites. 

The flux data was acquired every half hour for comparison with each 

corresponding satellite pixel, which was time-aligned with the flux measure-

ment down to a 2.5 minute window (resulting from the 5-minute satellite 

interval). The satellite pixels for each of the 16 bands were available regard-

less of weather impacts, whereas the flux stations would remove periods of 
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175 extreme wind or rain automatically. 

2.3. Gradient Boosted Regression Trees (GBRT) 

Gradient-boosted regression trees (GBRTs) were selected based on their 

performance with multivariate systems and their ability to handle nonlinear-

ities without overfitting (Kedem et al., 2012). The GBRT algorithm used 

here is similar to the method developed by Ke et al. (2017), wherein the dif-

ference between variable and observation is calculated as a ’loss function’ and 

broken into parts, called trees. The number of trees is determined by the in-

crease in accuracy for subsequent added trees. For example, if the increase in 

number of trees decreases the error down by a certain amount, then another 

tree is added, and the partitioning continues. If an asymptote in accuracy 

is reached, then the adding of trees ceases (Friedman, 2001; Mason et al., 

2000). The accuracy for GBRTs here is calculated using the least-squares 

method. For the gradient boosting aspect, pseudo-residuals are computed as 

the gradient of the loss function and used at each time step to increase the 

prediction capabilities of the model (Friedman, 2002). 

Using GBRTs, the 16 satellite radiances, the 16 satellite radiance time 

derivatives, and land cover and geography-specific properties will be trained 

with the residual heat storage, as stated in Eqn. 2. The goal is to create 

a robust algorithm that uses not only the radiance data relayed from the 

satellite, but also the contribution of land cover and other phenomena. By 

using land cover-specific parameters, the hysteresis algorithm will uncover 

potential relationships between satellite data and ground properties, making 

it easier to use the algorithm in uncalibrated areas. GBRTs are sensitive 

to overfitting, and as a result, independent stations will be used to assess 
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200 the true performance of the model. Training size will also be varied as a 

way to explore the time-series dependence of the model and asses the peak 

performance of the model (Robinzonov et al., 2012; Schonlau, 2005). 

Python’s Scikit-learn library (Pedregosa et al., 2011) is used to implement 

the gradient-boosted regression tree method outlined above (Prettenhofer 

and Louppe, 2014). For training and validation, the residual heat storage 

flux is partitioned in time and across 34 flux stations over the summer of 

2019. The stations are then separated into testing and validation groups, 

where some stations are reserved for independent verification of the model. 

The data was partitioned in time as a percentage of total data points for 

each station to be inputted into the GBRT algorithm. For example, if a 

station has 1000 valid data points, a training size of 80% uses 800 data 

points for training and 200 data points for validation. Training periods are 

partitioned sequentially as a way to optimize the algorithm for real-world 

implementation. Using the sequential partition allows the data to be used 

in a similar method for an operational product, where the training can be 

done continuously with data as it is updated in time. This may enable real-

time calibration and perhaps improve the overall accuracy of the model in 

the long-term. The stations are randomly shuffled when trained, meaning 

the errors can vary from training to training. This helps diversify the model 

with different inputs and test the stability and overfitting artifacts, if any, 

present in the model. 

2.4. Downscaling Routine 

A simple downscaling routine is proposed that requires no further tools 

or training to the machine learning algorithm. The downscaling takes the 
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225 available parameters: NLCD, geography, satellite radiances; and uses the 

higher spatial resolution parameters to create higher resolution maps of heat 

storage. The proposed scaling takes the 2-km native algorithm (chosen based 

on the dominant resolution of 12 of the 16 radiance bands) and outputs a 

320-m product. 

The NLCD and digital elevation model both have the advantage of 30-

m spatial resolution. The 30-m resolution, therefore, dictates the smallest 

resolution possible for the algorithm, assuming the downscaling procedure 

functions accurately and linearly, without introducing considerably large er-

rors. The downscaling proposed here follows a similar method used in vari-

ous satellite algorithms relating to meteorology (Busch et al., 2012; Mascaro 

et al., 2010; Ranney et al., 2015). Three types of algorithms can be found for 

downscaling satellite products: satellite-to-satellite methods, methods that 

use geoinformation data, and model-based models (Mitraka et al., 2015; Peng 

et al., 2017). One or a combination of the aforementioned methods can be 

seen across the literature for accurately downscaling satellite data. 

The downscaling presented here hinges on the hypothesis that the heat 

storage relies heavily on land cover fraction, meaning the machine learning 

model will respond to the higher resolution inputs without change to its 

accuracy. And since there is no comparative satellite with higher spatial res-

olution and similar temporal or spectral resolution - the satellite-to-satellite 

method is not employable here. Of course, a higher resolution satellite could 

be used while available over its specific overpass times, and this is perhaps the 

most commond method of downscaling, however, since the model used here is 

a multi-spectral approach, the satellite comparison would require downscal-
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250 ing first in the spectral domain, which is outside the scope of this particular 

study. The model-based method is also difficult to employ in this particular 

case due to lack of high-resolution ground networks for model training and 

the lack of a standard for comparison with numerical models. Consequently, 

geoinformation data is the method that will be used to downscale the model. 

These geostatistical assumptions may break down when compared with 

flux towers, due to the flux tower footprint in urban areas measuring from 

0.5km - 2km across the literature (Bergeron and Strachan, 2011; Feigenwin-

ter et al., 2017; Kotthaus and Grimmond, 2012, 2014; Velasco et al., 2005, 

2009), however, this will be assessed during the presentation of results in 

later sections. 

2.5. Error Metrics 

The hysteresis model given in the forthcoming analysis uses standard 

statistical methods to assess its performance against ground station residual 

flux data. The following metrics are given in relation to the comparison 

between model storage heat flux and ground-truth station heat storage flux 

derived as a residual (Laurent et al., 1998; Singh and Irmak, 2009; Şahin, 

2012): 

vuu XN t 1 
RMSE = (ΔQ − ΔQ )2 (4)

N s,i,model s,i,station  
i=1 

1 XN 

MAE = |ΔQs,i,model − ΔQs,i,station| (5)
N 

i=1 

1 XN 

MBE = (ΔQs,i,model − ΔQs,i,station) (6)
N 

i=1 
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Figure 2: Flux station locations and land cover map for New York City mapped from the 

National Land Cover Database (NLCD). 

P 
(ΔQs,i,model −2 i  ΔQs,i,station)

2 

R = 1 − P (7)
(ΔQs,i,station −i  ΔQstation)2 

where RMSE represents the root-mean-square error, MAE is the mean-

absolute error, MBE is the mean bias error, and R2 is the coefficient of 

determination, sometimes called the model efficiency. These four metrics 

were chosen as a way of normalizing the comparisons in the literature - which 

use a varying amount of the relationships given above. 

3. Geography and Data Selection 

3.1. Study Area 

The study area contains a grid of 16x24 GOES-16 satellite pixels at the 

2-km scale, resulting in a total of 384 pixels in the NYC region for the native 

satellite-derived algorithm. A total of 34 stations were used for the analysis: 
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278 20 from NEON, 10 from Ameriflux, 3 from the NYS Mesonet, and 1 from the 

City College of New York. The observation period spanned June - August 

2019, and the geographic spread of the stations was limited to the bounds 

of the CONUS (continental United States). All of the stations were trained 

for different percentages of the available data, whereas the particular urban 

analytics are focused on the four urban sites located in New York City. Figure 

2 shows the four NYC flux stations plotted atop the NLCD map of NYC. 

The study area is dominated by open water and developed land cover, both 

of which can be observed in Fig. 2. 

3.2. Surface Flux Stations 

Three networks are used for analysis: the National Ecological Observa-

tory Network (NEON), the Ameriflux network, and the New York State 

Mesonet. For each of the networks, fluxes are derived using the eddy-

covariance method (Network, 2020a). NEON sites use Campbell Scientific 

CSAT-3 sonic anemometers and Li-Cor LI-7200 gas analyzers mounted atop 

vertical towers. The raw data are used to generate 30-minute turbulent flux 

data products for sensible and latent heat fluxes. Net radiation is derived 

using components of incoming and outgoing shortwave and longwave radia-

tion, acquired with Hukseflux NR01 net radiometers. A total of 21 NEON 

sites are, for the most part, non-urban and will help decouple vegetative 

components of land cover in urban sites produced by the NYS Mesonet. 

Ameriflux core sites are used in conjunction with the NEON sites and 

employ flux towers and gas analyzers similarly from Campbell Scientific and 

Li-Cor (Ameriflux, 2020). Nine stations are used from the Ameriflux network, 

most of which are non-urban. The Ameriflux sites were introduced as a way of 
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303 diversifying the training and validation of the satellite algorithm. Similar to 

the NEON network, sensible and latent heat fluxes, along with net radiation 

were acquired at 30-minute intervals to produce the heat storage residuals. 

The final ground network is the NYS Mesonet. NYS Mesonet stations use 

Kipp & Zonen CNR4 net radiometers and Campbell Scientific CSAT3A 3D 

ultrasonic anemometers and EC155 gas analyzers. The instrumentation lo-

cated on the NYS Mesonet sites also record sensible, latent, and 4-component 

radiation every thirty minutes. Three NYS Mesonet sites are used, all of 

which are specifically urban and are located within New York City. An ad-

ditional flux tower is located in Manhattan at the City College of New York 

(CCNY), which is identical to the NYS Mesonet instruments but is not main-

tained by the NYS Mesonet. This results in a total of 34 ground flux stations 

for the analysis. The urban sites will serve as the test bed for the satellite 

routine and will be used as performance benchmarks for the machine learning 

routine. 

3.3. GOES-16 Satellite Data 

The Geostationary Operational Environmental Satellite-R Series (GOES-

R) renamed GOES-16 upon reaching its operational orbit, is used as the 

weather satellite for comparison with ground-based residual heat storage 

fluxes acquired from the flux networks NEON and NYS Mesonet. The raw 

spectral radiance data is acquired from the Advanced Baseline Imager (ABI) 

in a data product called L1b (Level 1b), which are openly available to anyone 

on the Google BigQuery database. 

The units associated with L1b spectral radiances are [W·m−2sr−1µm−1]. 

GOES-16 scan mode 3 is used and results in one observation of the conti-
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328 nental United States (CONUS) every five minutes, for each of the 16 bands. 

This allows a temporal alignment accuracy of 2.5 minutes between ground-

based flux stations and corresponding satellite pixels. The spatial resolution 

between neighboring pixels depends on the chosen band, but vary roughly 

0.5 km - 2.0 km (Group and Program, 2017). 

3.4. Land Cover and Digital Elevation Model 

The U.S. Geological Survey recently published its fifth National Land 

Cover Database (NLCD), designated the NLCD 2016. The contiguous U.S. 

(CONUS) NLCD 2016 product is used here, which is produced at 30-m spa-

tial resolution and contains 16 land cover classes (Jin et al., 2019; Wickham 

et al., 2014; Yang et al., 2018a). The classes are divided into the following 

categories: open water; perennial ice/snow; developed: open space, low in-

tensity, medium intensity, and high intensity; barren land (rock/sand/clay); 

forest: deciduous, evergreen, mixed; shrub/scrub; grasslands/herbaceous; 

pasture/hay; cultivated crops; wetlands: woody and emergent herbaceous. 

Refer to Fig. 2 for the NLCD breakdown in New York City. The NLCD 

2016 incorporates four urban categories (developed classes) and will serve as 

the determination of urbanization for given satellite pixels. 

Along with the 16 NLCD classes, a digital elevation model (DEM) will 

be added as part of the classification of each satellite pixel. The Shuttle 

Radar Topography Mission (SRTM) is run by the U.S. Geological Survey and 

publishes a freely available, 30-m resolution, elevation product that spans the 

entire contiguous U.S. (Elkhrachy, 2018). Latitude and longitude coordinates 

dictate the elevation across a given satellite pixel, and is used in the machine 

learning algorithm to capture the sensitivity of heat storage to changes in 
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353 elevation and as well as land class. This is commonly done for satellite-

based assessments of evapotranspiration or thermodynamic processes at the 

Earth’s surface (Cheng et al., 2011; Semmens et al., 2016; Xian and Crane, 

2006; Zhou et al., 2014). Both the DEM and NLCD are at much higher 

resolution than the satellite, which will aid in the downscaling of the final 

satellite algorithm. 

3.5. Relationship Between Satellite Bands and Residual Heat Storage 

The hypothesis of this research hinges on the correlation between satel-

lite radiance and ground station residual heat storage. If net radiation is 

derived using satellite radiances throughout the literature (Bisht and Bras, 

2010; Carmona et al., 2015; Hou et al., 2014; Jin et al., 2011), then an ap-

plication of raw radiances, without the intermediary routine for predicting 

net radiation, may suffice for approximating of heat storage directly. Partic-

ularly, with the high temporal resolution of the 16 satellite bands covering 

the visible, near-infrared, and infrared wavelengths (Schmit et al., 2018) -

the correlation between satellite radiances and heat storage should be high. 

Figure 3 demonstrates the correlation between ground station and nearest 

satellite pixel for an urban area (Brooklyn, NY), where the correlation be-

tween variables is defined as (Benesty et al., 2009; Inglada, 2002): 

PN (ΔQs,k −k=1  ΔQs) · (Lλ,k − Lλ)
Corr = q qP P (8)

N N− 2 · − 2 
k=1 (ΔQs,k  ΔQs)  k=1 (Lλ,k  Lλ)

The shortwave bands can be seen to negatively correlate with the heat 

storage flux during the daytime, which is expected due to the influence of 

direct solar irradiation. During the nighttime, the shortwave bands have 

354 

355 

356 

357 

358 

359 

360 

361 

362 

363 

364 

365 

366 

367 

368 

369 

370 

371 

372 

373 

374 

18 



Figure 3: Correlation between ground station residual heat storage flux and nearest satel-

lite pixel for each GOES-16 band. The shortwave bands are negatively correlated to the 

heat storage flux during the daytime, and minimally correlated during the nighttime; 

whereas the longwave bands are positvely correlated to the storage flux during the day-

time and negatively correlated during the nighttime. These correlations are essential to 

the hypothesis that radiance bands can be used to calculate heat storage flux. 

375 almost no correlation to the heat storage, as expected, due to the opposite 

reasoning proposed in the previous sentence. For longwave bands, there is 

high correlation during the nighttime and daytime. Longwave bands are 

positvely correlated to the storage flux during the daytime and negatively 

correlated during the nighttime. These correlations reinforce the original 

hypothesis that the GOES-16 radiance bands can be used to calculate heat 

storage flux - the primary motivator going forward in this research. 
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Figure 4: RMSE as a function of training size for the training dataset and independent 

dataset. The training dataset and independent dataset have also been divided into the 

training period and validation period as well. We see the decrease in RMSE as a function 

of increased training size for the validation periods, as expected. 

382 4. Results and Discussion 

383 4.1. Training and Validation 

Neither training nor validation were uniform across the swath of available 

stations due to the variability of local meteorological conditions (high winds, 

heavy rain) and complications with instrumentation, both of which cause 

drops in data. This results in differing amounts of points per station over 

the full testing period. Figure 4 shows the average RMSE for training and 

validation periods, where the training dataset is a unique set of 21 ground 

stations taken from all three networks, while the independent dataset is a 

separate unique set of 13 ground stations from each of the three networks. 
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Table 1: Division of training and validation data for the analysis over summer 2019. 

Dataset Period # Stations Mean # Points RMSE 

Training Training 21 2927 55.8 

Training Validation 21 326 52.6 

Independent Training 13 2594 63.7 

Independent Validation 13 289 60.5 

392 The profiles given in Fig. 4 exhibit expected behavior as the training size 

changes. The training dataset carries the lowest error during the training 

period, which is most likely due to overfitting - a common artifact of GBRT 

algorithms (Kedem et al., 2012). Similarly, the error in the validation period 

is also lower than that of the independent dataset. The independent dataset 

does, however, demonstrate consistent error across the range of training sizes, 

indicating that the training is somewhat stable in training size, with a slight 

decrease in error as the training size increases. 

Considering the results of Fig. 4, 90% of the data was selected for training 

and 10% was reserved for validation. It would be valid to select any training 

size over 80%, as that point marks the approximate asymptote in training and 

validation error. The independent dataset experiences similar phenomena, 

with less variability, indicating a more accurate prediction of the model’s true 

performance in relation independent ground stations (or satellite pixels). 

Statistics relating to the satellite-derived GBRT model for heat storage 

at 90% training are given in Table 1. A resulting argument can be made 

regarding the performance of the satellite hysteresis model , stating that 

the 2-km spatial model carries errors on the order of 60-65 W·m−2 , when 
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Figure 5: Scatter for NYC flux stations and the model performance using GOES-16 satel-

lite. 

410 compared with ground-based residual heat flux. This, of course, has only 

been posited for the summer of 2019, and the validity of this statement is 

contingent upon further validation across multiple seasons. 

4.2. The Case Study of New York City 

In Fig. 5, four scatter plots are given for each of the urban stations in New 

York City, exclusively for the validation period. Two of the urban stations 

were used during training (BLKN and CCNY), while the other two were not 

(QUEE and STAT). For all four stations, the RMSE values were below 60 

W·m− 2 and the MAE were below 43 W·m −2 . The average value for both 

RMSE and MAE in the urban region were 49 and 34 W·m−2 , respectively. 
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Figure 6: Temporal reconstruction of ΔQs using the satellite hysteresis model. 

The average MBE was 7.6 W·m−2 , and the average R2 was 0.83. All four 

performance metrics are well within the ranges cited across the literature 

(Roberts et al., 2006). 

Investigation of Fig. 6 shows the temporal reconstruction of the same set 

of validation data given in Fig. 5. The array of temporal reconstructions is 

capable of tracking the diurnal profile of ΔQs quite well, something that has 

not been demonstrated in the contemporary satellite research (Chrysoulakis 

et al., 2018; Kato and Yamaguchi, 2007; Parlow, 2003; Rigo and Parlow, 

2007). The satellite hysteresis model is also capable of approximating heat 

storage during rainy and cloudy periods, another capability lacking in the 
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430 satellite literature. On the 22nd, 23rd, and 28th of August, historical weather 

records for the NYC area show rainy and cloudy conditions, which is exhib-

ited in Fig. 6 by the lower amplitudes of heat storage. 

For most of the diurnal cycle, the model is able to recreate the trend of 

heat storage for each of the sites. What varies most with the model is its abil-

ity to capture the full-scale amplitude of both the daytime maximums and 

the nighttime minimums. For the Queens station (QUEE), the daytime satel-

lite heat storage peaks are smaller than the station residuals, and during the 

nighttime the opposite can be observed. For the Staten Island (STAT) sta-

tion, the daytime peaks are somewhat over-predicted by the satellite, which 

can also be concluded by looking at the statistical bias. 

Since both QUEE and STAT were omitted from the training dataset, 

we can hypothesize that the satellite-derived ΔQs may have a positive bias 

for less urban stations (STAT island is only about 60% developed in land 

cover class), and has a more tempered response in amplitude both during 

the daytime and nighttime for more urban areas (observed for QUEE, where 

the land cover class is nearly 100% developed). However, more urban stations 

are needed to fully verify this claim. 

Something to note is that both training stations, BKLN and CCNY, are 

each nearly 100% urban, meaning that each of the stations and satellite pixels 

have different responses despite similar classifications in land cover. This is 

an important observation and one that increases the confidence of the model’s 

ability to capture varying responses over urban environments where ground 

stations are unavailable for comparison. Although the error associated with 

QUEE is higher than the other three stations, it is well within the range of 
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455 errors cited across the literature for ground-based OHM methods, indicating 

that the satellite routine is a viable approach to quantifying heat storage. 

The errors will also be explored in subsequent sections, once the downscaling 

routine has been introduced. 

4.3. Downscaling from 2-km to 320-m 

The ubiquity of water surrounding the land masses of New York City 

results in a particular obstacle for development of the satellite algorithm. The 

issue arises when training the algorithm, where the lack of ground stations 

over water creates a weakness for pixels that contain certain amounts of

water. As a consequence, pixels with a water fraction greater than 0.05 (5%) 

were dropped. And with the satellite-derived heat storage outputting data at 

a native 2-km resolution , many of the pixels in the study area were dropped. 

As a way to both increase the number of satellite pixels in the small 

window of NYC and avoid dropping so many pixels due to water content -

a downscaling routine was developed. The downscaling takes the satellite 

algorithm from 2-km to 320-m, which results in fewer dropped pixels and 

a better representation of the distribution of heat storage in cities. This is 

specifically important for coastal cities where water surrounds highly urban 

areas. 

As explained in Section 2.4, the native resolution of the satellite-derived 

heat storage is 2-km, set by the dominant spatial resolution of the radiance 

bands. Here, the downscaling is set to 320-m, which increases the resolu-

tion of the NYC grid to 100x150. The implementation of the downscaling 

algorithm is validated for QUEE and STAT, with a decrease in RMSE of 

5.4 W·m− 2 for QUEE and 0.3 W·m− 2 for STAT. This is shown in Fig. 7. 
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Figure 7: Downscaling performance for STAT (left) and QUEE (right) sites. The down-

scaling from 2-km to 320-m resulted in a decrease in RMSE (5.5W ·m−2) for the QUEE 

pixel and no change in RMSE for the STAT pixel, partially validating the accuracy of the 

downscaling procedure. 

480 The same was observed for both BKLN and CCNY stations as well, where 

their errors never deviated more than 2 W·m−2 when comparing the 2-km 

pixel to the 320-m downscaled value. A sensitivity analysis was done for 

neighboring pixels surrounding each ground station, and similar results were 

found for the adjacent pixels, where marginal variability was found due to 

land cover changes. The results presented henceforth will be on the 320-m 

satellite-derived heat storage using the GBRT method and the downscaling 

presented here. 
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488 4.4. Spatial Representation of Heat Storage 

A spatial representation of heat storage using the satellite hysteresis 

model is given in Fig. 8 for both midday and midnight periods on Au-

gust 24th, 2019. The data has been downscaled as per the routine given in 

the previous section, resulting in a resolution of 320-m, rather than 2-km. A 

spatial filter has also been implemented based on water content: any pixel 

with more than 5% water is omitted. Additionally, any pixel that exists out-

side the range [-200,600] W·m−2 is also omitted. This is based on the average 

maxima and minima observed over several standard deviations. 

The first and perhaps most obvious inference is that the native 2-km pixels 

have overwhelmingly influenced each downscaled pixel. The distribution of 

color in the spatial domain seems to be dominanted by each underlying 2-

km pixel, giving the squared-off artifact in both plots in Fig. 8. This is 

likely due to the priority of each variable in the GBRT model, i.e., time and 

radiance bands take precedent over land cover and elevation. This, simply 

put, indicates that the model is more sensitive to macro changes in geography, 

rather than local changes in geography, perhaps due to viewing angle of the 

satellite or large changes in elevation. 

The transition between positive and negative fluxes is also visible in the 

spatial representations of heat storage. Sunrise, for example, is captured on 

the 27th of August in Fig. 9a, where the storage is largely varied throughout 

the city. The sunrise on that day was observed at 6:18 a.m., indicating a 

possible delayed effect in heat storage for certain areas. The same can be 

observed a few hours after peak heating at 5:30 p.m., in Fig. 9b, where 

the release of heat (negative storage) is seen for some pixels, while positive 
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(a) (b) 

Figure 8: (a) Daytime representation of heat storage, ΔQs on Aug. 24 at 12:00 EDT.. 

(b) Nighttime representation of heat storage on Aug. 24 at 01:30 EDT. 

(a) (b) 

Figure 9: (a) Heat storage after sunrise (07:30 EDT on Aug. 27) capturing the variability 

of the city’s response to heating of its surface. (b) The inversion of heat storage (zero-

crossing point) is shown just after sunset on Aug. 27 at 18:30 EDT. 

513 storage is seen for others. This indicates another possible spatial delay. 

514 The standard deviation of ΔQs across valid pixels is also observed to vary 

515 throughout the day. The midday spatial distribution of heat storage varies 

−2 −2 
516 up to ±65 W·m , and the nighttime down to ± W·m . These values, on 

517 average, amount to 15-20% of the relative amplitudes of ΔQs. The largest 

518 variability occurs during the transitional periods given in Fig. 9, at sunrise 

519 and a few hours after peak heating. 
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520 4.5. Comparisons with Literature 

A statistical comparison between satellite-derived heat storage algorithms 

is nearly impossible as no identifiable studies have used an approach that 

validates their model directly against ground station values. Therefore, no 

satellite-to-satellite performance comparison is possible. This is likely due 

to the lack of measurement standards for heat storage, and moreover, a 

consequence of ground station sparseness in urban areas. One thing that is 

investigated in the literature is the fraction of net radiation occupied by heat 

storage. This is not valid in our case as net radiation is a component in the 

residual method and, accordingly, used to train the model. 

One definite advantage of the GBRT-based method is that it avoids a 

common pitfall associated with satellite algorithms in urban areas, namely, 

the handling of non-Lambertian surfaces. This is likely due to the inclusion of 

multispectral data, which may handle some of the urban heterogeneity issues 

in reflected radiation (de Almeida Castanho et al., 2007; Hamedianfar and 

Shafri, 2015). Moreover, the temporal resolution of the satellite also permit-

ted a large statistical comparison between model and ground stations, which 

also contributes to the uniqueness and stability of the algorithm. MODIS 

comparisons, for example, are limited to two comparison points per day along 

the diurnal cycle. 

A more appropriate evaluation of the satellite hysteresis model is through 

comparison with studies that calculate statistics based on ground-to-ground 

measurements. As mentioned in the introduction, there are four methods 

used for calculating heat storage in the relevant literature: the residual 

method (RES), the objective hysteresis model (OHM), the thermal mass 
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Table 2: Comparison between satellite-derived hysteresis model and the objective hys-

teresis model derived from ground net radiation data for various cities. Results from this 

study are in bold and are taken from the downscaled comparison with the nearest NYC 

ground station. The table is ordered by increasing RMSE. 

Site/Description # Points R2 RMSE 

 Los Angeles, CA (suburban)a 424 0.92 29.0 
 Mexico City (city center)a 61 0.96 33.6 

Brooklyn, NY (urban) 345 0.92 39.5 
Manhattan, NY (urban) 229 0.91 45.0 

 Vancouver, Canada (industrial)a 312 0.88 48.9 
Queens, NY (urban) 397 0.87 53.7 
Staten Island, NY (suburban) 379 0.65 53.9 

 Miami, FL (suburban)a 204 0.79 61.9 
 Vancouver, Canada (suburban)a 464 0.67 62.9 

 Sacramento, CA (suburban)a 222 0.56 66.0 
 São Paulo city, Brazil (suburban)a 353 0.69 74.1 

 Chicago, IL (suburban)a 163 0.56 83.3 
 Marseille, France (city center)b 192 0.70 94.8 

 Tucson, AZ (suburban)a 75 0.75 107.4 

aGrimmond and Oke (1999) 

bRoberts et al. (2006) 

545 scheme (TMS), and the town energy balance (TEB). One widely recognized 

paper by Roberts et al. (2006) compiles a comparison of all four methods 

into one study, and includes an error analysis for the OHM, TMS, and TEB 

against the RES method. It also agglomerates other studies in an effort to 

corroborate its statistics. Those errors are used here as a guide, in part, to 

assess the results produced by the satellite hysteresis model. 

Table 2 shows the comparison between 14 different heat storage calcula-

tions by hysteresis model, four of which contain the satellite-derived results 

546 

547 

548 

549 

550 

551 

552 

30 



553 from NYC. Overall, the New York City stations: Queens (QUEE), Brooklyn 

(BKLN), Manhattan (CCNY), and Staten Island (STAT), all outperform 7 of 

the 10 stations in root-mean-square error. This is quite remarkable, particu-

larly for the independently verified stations STAT and QUEE. All four NYC 

stations are also validated with more data points than 6 out of 10 stations. 

These statistics are an indication that the satellite-derived heat storage is a 

viable model against the ground-based OHM. 

As for the town energy balance (TEB) method, the same study uses 

Marseille, France as a test site. The TEB estimated a mean hourly RMSE 

between TEB and RES of 79 W·m− 2 . Another evaluation of the TEB was 

done by Masson et al. (2002) for Mexico City and Vancouver, which managed 

mean RMSE values of 39 and 87 W·m−2 , respectively. A third experiment 

carried out in the city of Basel, Switzerland compared two different imple-

mentation schemes for the TEB and found RMSE values of 64 and 70 W·m−2 . 

Resolutely, it is fair to say that the satellite-derived hysteresis model outper-

forms the town energy balance. 

For the previous study in Marseille, the final calculative method for heat 

storage is examined: the thermal mass scheme (TMS). The RMSE between 

RES and TMS was measured to be 109 W·m−2 - quite a large error when com-

pared to the satellite hysteresis model. Heat storage derived by thermal mass 

scheme and objective hysteresis model are most suited for satellite data due 

to incorporation of thermal properties rather than aerodynamic properties. 

Thus, the dilemma described above regarding inability to compare satellite 

methods arises again for the TMS. As a result, very few studies have errors 

associated with the RES method. 
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578 Building information is often used as an input to urban storage mod-

els, such as the town energy balance (TEB) or element surface temperature 

method (ESTM). Building height and building area fraction information were 

deliberately excluded in the proposed satellite hysteresis model, due to the 

limitations in training, where the majority of the ground stations either do 

not contain buildings or lack building information. Thus, training with build-

ing information would be very limited and likely result in further overfitting 

in the GBRT model. This is where the national land cover database’s four 

urban categories become important, as they account for the range of urban-

ization in the ground networks ranging from open space to high intensity 

urban development. 

Another important aspect of quantifying heat storage, either from the 

satellite or surface perspective, is the accurate accounting of anthropogenic 

heat flux. A wide range of studies have developed algorithms for deter-

mining anthropogenic heat flux using traffic information, population density, 

fuel economies, among others (Sailor and Lu, 2004). For the proposed mul-

tispectral hysteresis model, it is assumed that the anthropogenic heat flux is 

inherent in the measurement of conductive, convective, and radiative fluxes 

captured by eddy covariance instruments placed in the urban areas (Grim-

mond and Oke, 2002). This is based on observations made in several cities 

that argue that the majority of the anthropogenic influence is outputted as 

sensible heat flux (Kato and Yamaguchi, 2005b; Olivo et al., 2017; Sailor, 

2011). This assumption may result in under-prediction of heat storage, but 

it is difficult to quantify by how much, and is designated as an area for future 

research. 
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603 The lack of studies comparing satellite-derived heat storage to ground sta-

tions is a motivating factor for other future works relating to satellite-derived 

heat storage. It is likely that in the future, the thermal mass scheme will 

be implemented using satellite data, notably due to the temporal resolution 

advancements of the GOES-16 and GOES-17 satellites. For now, the com-

parison between satellite-derived heat storage and ground stations remains 

chiefly neglected. 

5. Conclusion 

A multispectral hysteresis model was introduced as a way to predict heat 

storage flux in urban areas using land cover and geographic properties con-

tained within satellite pixels. The model bridges the divide between single-

point ground measurements and spatially-distributed satellite approxima-

tions, with direct validation - something nonexistent in the peered literature. 

A gradient-boosted regression tree (GBRT) method was used to train input 

variables against a series of ground flux stations. The satellite hysteresis 

model outperformed many of the ground-to-ground hysteresis models, indi-

cating that the satellite method may be an improved, more robust method 

for calculating heat storage flux. 

The error associated with the urban satellite hysteresis model was among 

the best inhen compared with other studies in the research field. For all 

four urban stations, the independently validated, 320-m spatially downscaled, 

average RMSE value was found to be 48.0 W·m−2 , the average mean-absolute 

error (MAE) was found to be 33.8 W·m−2 , the average mean bias error (MBE) 

was 9.3 W·m−2 , and the mean R2 , 0.84. 
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627 The satellite-derived heat storage is also able to recreate spatial patterns 

in heat storage that were not previously possible, specifically in relation to 

the full diurnal cycle. Because the algorithm was independently trained and 

validated, its accuracy and ability to recreate hourly approximations of heat 

storage is noteworthy and unprecedented. 

Another accomplishment of the satellite hysteresis model is its ability to 

capture all-weather profiles. We saw for several periods that the satellite 

radiances were able to capture cloudy and rainy days, which permitted the 

calculation of tempered heat storage despite limited solar irradiance. The 

captured heat storage under rainy weather is something that has not been 

observed in the literature. One hypothesis is that the machine learning algo-

rithm is able to relate the diminishment of radiance amplitude to the decrease 

in heat storage. It could also be true that some of the radiance bands are 

capturing minimal radiation beyond the clouds, however, this has not been 

verified or studied at length, and remains a topic for future exploration. 

Lastly, the maintained accuracy of the approximation of heat storage un-

der downscaled conditions proves that the algorithm is capable of component 

analysis and needs to be explored to the fullest extend. In summary, accurate 

quantification of the spatial distribution of heat storage in built environments 

has been an open question that, if resolved, will open a wide range of oppor-

tunities in closing the surface energy balance. Temporal, spectral, and spatial 

resolutions of new generation geostationary satellites are making this quan-

tification a closer reality. This may enable significant advances in weather 

and climate modeling for accurate prediction of UHI, for urban planning, 

and for relationships between thermal responses of urban environments and 
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652 energy demands. This contribution is a first major step in this direction. 
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